skip to main content


Search for: All records

Creators/Authors contains: "Freddolino, Peter L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    With the progress of structural biology, the Protein Data Bank (PDB) has witnessed rapid accumulation of experimentally solved protein structures. Since many structures are determined with purification and crystallization additives that are unrelated to a protein's in vivo function, it is nontrivial to identify the subset of protein–ligand interactions that are biologically relevant. We developed the BioLiP2 database (https://zhanggroup.org/BioLiP) to extract biologically relevant protein–ligand interactions from the PDB database. BioLiP2 assesses the functional relevance of the ligands by geometric rules and experimental literature validations. The ligand binding information is further enriched with other function annotations, including Enzyme Commission numbers, Gene Ontology terms, catalytic sites, and binding affinities collected from other databases and a manual literature survey. Compared to its predecessor BioLiP, BioLiP2 offers significantly greater coverage of nucleic acid-protein interactions, and interactions involving large complexes that are unavailable in PDB format. BioLiP2 also integrates cutting-edge structural alignment algorithms with state-of-the-art structure prediction techniques, which for the first time enables composite protein structure and sequence-based searching and significantly enhances the usefulness of the database in structure-based function annotations. With these new developments, BioLiP2 will continue to be an important and comprehensive database for docking, virtual screening, and structure-based protein function analyses.

     
    more » « less
  2. Diet profoundly influences brain physiology, but how metabolic information is transmuted into neural activity and behavior changes remains elusive. Here, we show that the metabolic enzyme O-GlcNAc Transferase (OGT) moonlights on the chromatin of the D. melanogaster gustatory neurons to instruct changes in chromatin accessibility and transcription that underlie sensory adaptations to a high-sugar diet. OGT works synergistically with the Mitogen Activated Kinase/Extracellular signal Regulated Kinase (MAPK/ERK) rolled and its effector stripe (also known as EGR2 or Krox20) to integrate activity information. OGT also cooperates with the epigenetic silencer Polycomb Repressive Complex 2.1 (PRC2.1) to decrease chromatin accessibility and repress transcription in the high-sugar diet. This integration of nutritional and activity information changes the taste neurons’ responses to sugar and the flies’ ability to sense sweetness. Our findings reveal how nutrigenomic signaling generates neural activity and behavior in response to dietary changes in the sensory neurons. 
    more » « less
  3. Imaging HP1 reveals rules for H3K9 methylation recognition and binding in living cells. 
    more » « less
  4. Abstract

    Deep learning techniques have significantly advanced the field of protein structure prediction. LOMETS3 (https://zhanglab.ccmb.med.umich.edu/LOMETS/) is a new generation meta-server approach to template-based protein structure prediction and function annotation, which integrates newly developed deep learning threading methods. For the first time, we have extended LOMETS3 to handle multi-domain proteins and to construct full-length models with gradient-based optimizations. Starting from a FASTA-formatted sequence, LOMETS3 performs four steps of domain boundary prediction, domain-level template identification, full-length template/model assembly and structure-based function prediction. The output of LOMETS3 contains (i) top-ranked templates from LOMETS3 and its component threading programs, (ii) up to 5 full-length structure models constructed by L-BFGS (limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm) optimization, (iii) the 10 closest Protein Data Bank (PDB) structures to the target, (iv) structure-based functional predictions, (v) domain partition and assembly results, and (vi) the domain-level threading results, including items (i)–(iii) for each identified domain. LOMETS3 was tested in large-scale benchmarks and the blind CASP14 (14th Critical Assessment of Structure Prediction) experiment, where the overall template recognition and function prediction accuracy is significantly beyond its predecessors and other state-of-the-art threading approaches, especially for hard targets without homologous templates in the PDB. Based on the improved developments, LOMETS3 should help significantly advance the capability of broader biomedical community for template-based protein structure and function modelling.

     
    more » « less
  5. Abstract

    We report the results of the “UM‐TBM” and “Zheng” groups in CASP15 for protein monomer and complex structure prediction. These prediction sets were obtained using the D‐I‐TASSER and DMFold‐Multimer algorithms, respectively. For monomer structure prediction, D‐I‐TASSER introduced four new features during CASP15: (i) a multiple sequence alignment (MSA) generation protocol that combines multi‐source MSA searching and a structural modeling‐based MSA ranker; (ii) attention‐network based spatial restraints; (iii) a multi‐domain module containing domain partition and arrangement for domain‐level templates and spatial restraints; (iv) an optimized I‐TASSER‐based folding simulation system for full‐length model creation guided by a combination of deep learning restraints, threading alignments, and knowledge‐based potentials. For 47 free modeling targets in CASP15, the final models predicted by D‐I‐TASSER showed average TM‐score 19% higher than the standard AlphaFold2 program. We thus showed that traditional Monte Carlo‐based folding simulations, when appropriately coupled with deep learning algorithms, can generate models with improved accuracy over end‐to‐end deep learning methods alone. For protein complex structure prediction, DMFold‐Multimer generated models by integrating a new MSA generation algorithm (DeepMSA2) with the end‐to‐end modeling module from AlphaFold2‐Multimer. For the 38 complex targets, DMFold‐Multimer generated models with an average TM‐score of 0.83 and Interface Contact Score of 0.60, both significantly higher than those of competing complex prediction tools. Our analyses on complexes highlighted the critical role played by MSA generating, ranking, and pairing in protein complex structure prediction. We also discuss future room for improvement in the areas of viral protein modeling and complex model ranking.

     
    more » « less
  6. Heterochromatin is most often associated with eukaryotic organisms. Yet, bacteria also contain areas with densely protein-occupied chromatin that appear to silence gene expression. One nucleoid-associated silencing factor is the conserved protein Hfq. Although seemingly nonspecific in its DNA binding properties, Hfq is strongly enriched at AT-rich DNA regions, characteristic of prophages and mobile genetic elements. Here, we demonstrate that polyphosphate (polyP), an ancient and highly conserved polyanion, is essential for the site-specific DNA binding properties of Hfq in bacteria. Absence of polyP markedly alters the DNA binding profile of Hfq, causes unsolicited prophage and transposon mobilization, and increases mutagenesis rates and DNA damage–induced cell death. In vitro reconstitution of the system revealed that Hfq and polyP interact with AT-rich DNA sequences and form phase-separated condensates, a process that is mediated by the intrinsically disordered C-terminal extensions of Hfq. We propose that polyP serves as a newly identified driver of heterochromatin formation in bacteria. 
    more » « less
  7. null (Ed.)